Part Number Hot Search : 
FN4555 SP8481KP JT6N57 NKE1215D SR104 RT1N151S TFS82B LTK00MH
Product Description
Full Text Search
 

To Download 30-F206NIA300SA-M106F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  f206nia300sa-m106f preliminary datasheet flownpc 2 600v/300a neutral-point-clamped inverter high power flow2 housing low inductance layout ups solar inverters f206nia300sa tj=25c, unless otherwise specified parameter symbol value unit buck igbt t h =80c 209 t c =80c 275 t h =80c 331 t c =80c 502 t sc t j 150c 6 s v cc v ge =15v 360 v buck diode t h =80c 147 t c =80c 197 t h =80c 232 t c =80c 352 dc forward current a t j =t j max t p limited by t j max a i f t c =100c 900 v rrm maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings peak repetitive reverse voltage gate-emitter peak voltage v c v types maximum ratings condition features flow2 housing target applications schematic i frm t j max repetitive peak forward current power dissipation per diode p tot v w collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c 20 w a a 175 maximum junction temperature c 600 175 600 900 t j =t j max t j =25c t j =t j max t j =t j max t p limited by t j max 1 revi sion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost igbt t h =80c 208 t c =80c 275 t h =80c 331 t c =80c 502 t sc t j 150c 6 s v cc v ge =15v 360 v boost inverse diode t h =80c 166 t c =80c 219 t h =80c 232 t c =80c 352 boost diode t j =25c t h =80c 166 t c =80c 219 t h =80c 232 t c =80c 352 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 900 600 175 600 900 20 900 clearance insulation voltage creepage distance t op operation temperature under switching condition -40?+(tjmax - 25) c storage temperature t stg -40?+125 c peak repetitive reverse voltage c maximum junction temperature t j max 175 t j =t j max i c power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max v rrm v ge i f t j =t j max t j max p tot w a w v c v a peak repetitive reverse voltage repetitive peak forward current i frm a a t j =t j max t p limited by t j max short circuit ratings dc collector current power dissipation per igbt collector-emitter break down voltage t p limited by t j max repetitive peak collector current gate-emitter peak voltage v ce i cpuls v a v c w a maximum junction temperature t j max 175 t c =25c v rrm dc forward current p tot power dissipation per diode t j =t j max maximum junction temperature 600 2 revi sion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 5 5,8 6,5 t j =150c t j =25c 1,05 1,66 1,85 t j =150c 1,87 t j =25c 0,96 t j =150c t j =25c 700 t j =150c t j =25c 358 t j =150c 366 t j =25c 51 t j =150c 55 t j =25c 445 t j =150c 479 t j =25c 56 t j =150c 79 t j =25c 6,14 t j =150c 7,30 t j =25c 8,02 t j =150c 10,00 thermal resistance chip to heatsink per chip r thjh 0,29 thermal resistance chip to case per chip r thjc 0,19 t j =25c 1,5 2,04 3,3 t j =125c 2,20 t j =25c 143 t j =125c 192 t j =25c 132 t j =125c 280 t j =25c 10,6 t j =125c 21,6 di ( rec ) max t j =25c 2947 /d t t j =125c 2759 t j =25c 2,10 t j =125c 4,59 thermal resistance chip to heatsink per chip r thjh 0,40 thermal resistance chip to case per chip r thjc 0,30 3200 na 1 ns 1152 ns a v ? v ma mws pf 18480 25 0 rgoff=2 ? 20 300 0,0048 15 600 0 turn-on energy loss per pulse reverse recovered charge buck diode integrated gate resistor buck igbt gate emitter threshold voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current c mws a/ s k/w 548 characteristic values value conditions input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage v ge(th) v ce(sat) i ces r gint reverse recovery time reverse recovered energy peak rate of fall of recovery current peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge erec c oss i rrm c rss v f q gate t r t d(off) f=1mhz rgon=2 ? i ges t f e on e off t d(on) vce=vge c ies q rr t rr rgoff=2 ? 15 15 0 15 350 700 30 300 300 250 350 nc v tj=25c tj=25c thermal grease thickness 50um = 1 w/mk k/w thermal grease thickness 50um = 1 w/mk 3 revisio n: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5,8 6,5 t j =125c t j =25c 1,05 1,66 1,85 t j =125c 1,87 t j =25c 0,96 t j =125c t j =25c 700 t j =125c t j =25c 355 t j =125c 363 t j =25c 52 t j =125c 56 t j =25c 450 t j =125c 485 t j =25c 50 t j =125c 80 t j =25c 6,47 t j =125c 7,99 t j =25c 8,34 t j =125c 10,46 thermal resistance chip to heatsink per chip r thjh 0,29 thermal resistance chip to case per chip r thjc 0,19 t j =25c 1,5 1,82 3,3 tj=125c 1,86 thermal resistance chip to heatsink per chip r thjh 0,41 thermal resistance chip to case per chip r thjc 0,27 t j =25c 1,5 1,82 3,3 t j =150c 1,86 t j =25c 960 t j =150c t j =25c 150 t j =150c 199 t j =25c 144,5 t j =150c 283,9 t j =25c 10,9 t j =150c 22,6 di ( rec ) max t j =25c 3261 /d t t j =150c 2229 t j =25c 2,38 t j =150c 5,40 thermal resistance chip to heatsink per chip r thjh 0,41 thermal resistance chip to case per chip r thjc 0,27 b vincotech ntc reference 3996 k 3950 k b-value tol. 3% t=25c t=25c b-value tol. 3% 1 1152 18480 3200 t=25c t=25c t=100c t=25c 600 600 350 25 300 300 0,0048 300 thermal grease thickness 50um = 1 w/mk 15 300 rgoff=2 ? 20 20 i rrm diode forward voltage reverse leakage current v f i r thermistor reverse recovery energy t rr q rr e rec reverse recovery time peak rate of fall of recovery current 15 15 0 ma na v v thermal grease thickness 50um = 1 w/mk i ges 350 v ce =v ge f=1mhz rgon=2 ? rgoff=2 ? r100=1486 ? rated resistance power dissipation constant deviation of r100 power dissipation mw 200 0 k/w 15 nc 250 mw/k ns mws 0 ? tj=25c thermal grease thickness 50um = 1 w/mk boost diode 700 reverse transfer capacitance diode forward voltage v f e on i ces v ge(th) v ce(sat) t d(off) t r t d(on) r gint t f turn-off delay time collector-emitter saturation voltage collector-emitter cut-off incl diode turn-on delay time rise time integrated gate resistor peak reverse recovery current reverse recovered charge q gate e off turn-on energy loss per pulse boost igbt gate-emitter leakage current gate emitter threshold voltage fall time boost inverse diode gate charge input capacitance output capacitance c rss c oss c ies turn-off energy loss per pulse 548 tj=25c 2 5 -5 22000 % ? a/ s a k/w mws c v pf v a ns k/w 4 revisio n: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 350 s t p = 350 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 diode typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 350 s t p = 350 s v ce = 10 v buck typical output characteristics 0 100 200 300 400 500 600 012345 v ce (v) i c (a) 0 50 100 150 200 250 300 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 200 400 600 012345 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 500 600 012345 v ce (v) i c (a) 5 revis ion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 249 a r goff = 4 ? figure 7 diode figure 8 diode typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 249 a buck e on high t e off high t e on low t e off low t 0 4 8 12 16 20 0 100 200 300 400 500 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 4 8 12 16 20 0246810 r g (w) e (mws) e rec high t e rec low t 0 1 2 3 4 5 6 7 0 50 100 150 200 250 300 350 400 450 500 i c (a) e (mws) e rec high t e rec low t 0 1 2 3 4 5 6 7 0123456789 r g (w) e (mws) 6 revis ion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 249 a r goff = 4 ? figure 11 diode figure 12 diode typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 249 a r gon = 4 ? v ge = 15 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 50 100 150 200 250 300 350 400 450 500 i c (a) t (ms) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0246810 r gon (w) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0246810 r g (w) t (ms) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0 50 100 150 200 250 300 350 400 450 500 i c (a) t rr (ms) 7 revis ion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 13 diode figure 14 diode typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 249 a r gon = 4 ? v ge = 15 v figure 15 diode figure 16 diode typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 249 a r gon = 4 ? v ge = 15 v buck i rrm high t i rrm low t 0 75 150 225 300 375 0246810 r gon (w) i rrm (a) q rr high t q rr low t 0 5 10 15 20 25 0246810 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450 500 i c (a) i rrm (a) q rr high t q rr low t 0 5 10 15 20 25 30 0 50 100 150 200 250 300 350 400 450 500 i c (a) q rr (mc) 8 revis ion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 17 diode figure 18 diode typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 249 a r gon = 4 ? v ge = 15 v figure 19 igbt figure 20 diode igbt transient thermal impedance d iode transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,29 k/w r thjh = 0,41 k/w igbt thermal model values diode thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,02 9,6e+00 0,02 8,8e+00 0,07 1,7e+00 0,06 1,6e+00 0,07 2,9e-01 0,10 2,4e-01 0,09 4,4e-02 0,16 5,4e-02 0,02 7,6e-03 0,04 1,1e-02 0,02 3,6e-04 0,03 4,5e-04 buck t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 2000 4000 6000 8000 10000 12000 0246810 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 400 450 500 i c (a) di rec / dt (a/ms) 9 revis ion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 diode figure 24 diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c buck 0 100 200 300 400 500 600 700 0 50 100 150 200 t h ( o c) p tot (w) 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) i c (a) 0 100 200 300 400 500 0 50 100 150 200 t h ( o c) p tot (w) 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) i f (a) 10 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 249 a th = 80 oc v ge = 15 v t j =t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 5 10 15 20 0 250 500 750 1000 1250 1500 1750 2000 2250 q g (nc) v ge (v) 120v 480v 11 revision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 diode typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 0v boost 0 50 100 150 200 250 300 350 400 450 500 550 600 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 0 50 100 150 200 250 300 350 02468101214 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 500 600 00,511,522,53 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 500 600 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 12 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 251 a r goff = 4 ? figure 7 igbt figure 8 igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 251 a boost e rec high t e rec low t 0 1 2 3 4 5 6 7 8 0 50 100 150 200 250 300 350 400 450 500 i c (a) e (mws) e rec high t e rec low t 0 1 2 3 4 5 6 7 8 0246810 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 5 10 15 20 25 0 50 100 150 200 250 300 350 400 450 500 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 12 14 16 18 0246810 r g ( ) e (mws) 13 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 ? i c = 251 a r goff = 4 ? figure 11 diode figure 12 diode typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 251 a r gon = 4 ? v ge = 15 v boost t doff t f t don t r 0,001 0,01 0,1 1 10 0 50 100 150 200 250 300 350 400 450 500 i c (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 0510 r g ( ) t ( s) t rr high t t rr low t 0,000 0,050 0,100 0,150 0,200 0,250 0,300 0,350 0481 2 r gon (w) t rr (ms) t rr high t t rr low t 0,000 0,050 0,100 0,150 0,200 0,250 0,300 0,350 0 50 100 150 200 250 300 350 400 450 500 i c (a) t rr (ms) 14 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 13 diode figure 14 diode typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 251 a r gon = 4 ? v ge = 15 v figure 15 diode figure 16 diode typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 251 a r gon = 4 ? v ge = 15 v boost i rrm high t i rrm low t 0 50 100 150 200 250 300 0123456789 r gon (w) i rrm (a) q rr high t q rr low t 0 5 10 15 20 25 012345678910 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 400 450 500 i c (a) i rrm (a) q rr high t q rr low t 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 0 50 100 150 200 250 300 350 400 450 500 i c (a) q rr (mc) 15 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 17 diode figure 18 diode typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 251 a r gon = 4 ? v ge = 15 v figure 19 igbt figure 20 diode igbt transient thermal impedance d iode transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0,29 k/w r thjh = 0,41 k/w igbt thermal model values diode thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,02 9,6e+00 0,02 8,8e+00 0,07 1,7e+00 0,06 1,6e+00 0,07 2,9e-01 0,10 2,4e-01 0,09 4,4e-02 0,16 5,4e-02 0,02 7,6e-03 0,04 1,1e-02 0,02 3,6e-04 0,03 4,5e-04 boost t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 2000 4000 6000 8000 10000 12000 0246810 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 1000 2000 3000 4000 5000 6000 7000 8000 0 50 100 150 200 250 300 350 400 450 500 i c (a) di rec / dt (a/ms) 16 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 diode figure 24 diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc boost 0 100 200 300 400 500 600 700 0 50 100 150 200 t h ( o c) p tot (w) 0 40 80 120 160 200 240 0 50 100 150 200 t h ( o c) i c (a) 0 100 200 300 400 500 0 50 100 150 200 th ( o c) p tot (w) 0 50 100 150 200 250 0 50 100 150 200 th ( o c) i f (a) 17 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 0,41 k/w figure 27 boost inverse diode figure 28 boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc boost 0 100 200 300 400 500 600 700 800 900 00,511,522,533,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 100 200 300 400 500 0 50 100 150 200 th ( o c) p tot (w) 0 50 100 150 200 250 0 50 100 150 200 th ( o c) i f (a) 18 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? 19 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet t j 125 c r g on 2 ? r goff 2 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 249 a i c (100%) = 249 a t doff = 0,34 s t don = 0,25 s t eoff = 0,57 s t eon = 0,36 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 249 a i c (100%) = 249 a t f = 0,09 s t r = 0,04 s switching definitions buck igbt general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -40 0 40 80 120 160 200 240 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 time (us) % v ce i c t f i c10% i c90% -20 20 60 100 140 180 220 3,1 3,15 3,2 3,25 3,3 3,35 3,4 3,45 3,5 time(us) % tr v ce ic 20 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 174,13 kw p on (100%) = 174,13 kw e off (100%) = 9,37 mj e on (100%) = 3,62 mj t eoff = 0,57 s t eon = 0,36 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 700 v v geon = 15 v i d (100%) = 249 a v c (100%) = 700 v i rrm (100%) = -250 a i c (100%) = 249 a t rr = 0,14 s q g = 3318,23 nc switching definitions buck mosfet i c 1% v ge90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 time (us) % p of f e off t eoff v ce3% v ge10% -20 0 20 40 60 80 100 120 140 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -500 0 500 1000 1500 2000 2500 3000 3500 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 3,15 3,23 3,31 3,39 3,47 3,55 3,63 3,71 time(us) % i d v d fitted 21 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 249 a p rec (100%) = 174,13 kw q rr (100%) = 21,68 c e rec (100%) = 5,22 mj t qrr = 0,54 s t erec = 0,54 s figure 11 figure 12 buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions buck mosfet t qrr -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 4,1 time(us) % i d q r r -20 0 20 40 60 80 100 120 3,15 3,3 3,45 3,6 3,75 3,9 4,05 time(us) % p rec e rec t erec 22 rev ision: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet version ordering code in datamatrix as in packaging barcode as standard in flow2 housing 30-F206NIA300SA-M106F m106f m106f outline pinout ordering code & marking ordering code and marking - outline - pinout 23 revi sion: 4 copyright by vincotech
f206nia300sa-m106f preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 24 revis ion: 4 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of 30-F206NIA300SA-M106F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X